Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818835

RESUMO

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Assuntos
Antineoplásicos , Melanoma , Trifosfato de Adenosina , Animais , Antineoplásicos/farmacologia , Cálcio , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Mutação , Octopodiformes/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , RNA Mensageiro , Espécies Reativas de Oxigênio , Taquicininas/genética , Taquicininas/uso terapêutico , Peixe-Zebra/genética
2.
Cell Rep ; 34(11): 108851, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730574

RESUMO

Devil facial tumor disease (DFTD) and its lack of available therapies are propelling the Tasmanian devil population toward extinction. This study demonstrates that cholesterol homeostasis and carbohydrate energy metabolism sustain the proliferation of DFTD cells in a cell-type-dependent manner. In addition, we show that the liver-X nuclear receptor-ß (LXRß), a major cholesterol cellular sensor, and its natural ligand 24S-hydroxycholesterol promote the proliferation of DFTD cells via a metabolic switch toward aerobic glycolysis. As a proof of concept of the role of cholesterol homeostasis on DFTD proliferation, we show that atorvastatin, an FDA-approved statin-drug subtype used against human cardiovascular diseases that inhibits cholesterol synthesis, shuts down DFTD energy metabolism and prevents tumor growth in an in vivo DFTD-xenograft model. In conclusion, we show that intervention against cholesterol homeostasis and carbohydrate-dependent energy metabolism by atorvastatin constitutes a feasible biochemical treatment against DFTD, which may assist in the conservation of the Tasmanian devil.


Assuntos
Colesterol/metabolismo , Neoplasias Faciais/metabolismo , Neoplasias Faciais/veterinária , Homeostase , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Receptores X do Fígado/metabolismo , Marsupiais/metabolismo , Aerobiose/efeitos dos fármacos , Animais , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Faciais/patologia , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxisteróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316927

RESUMO

Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.


Assuntos
Leptina/metabolismo , Regeneração Hepática , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo/metabolismo , Animais , Humanos , Fígado/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...